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Summary 

A mathematical model for porous air electrodes is developed to opti- 
mize the structure of the electrode. The electrode consists of two layers; a 
gas-supplying layer and a reaction layer. The reaction layer is assumed to 
consist of porous catalytical agglomerates surrounded by a hydrophobic gas- 
supplying zone, which is made from the same material as the gas-supplying 
layer. It is assumed in the model that these agglomerates have a cylindrical 
shape. The model takes into account the diffusion of oxygen in the gas- 
supplying layer, the diffusion of dissolved oxygen, the electrochemical 
reactions taking place, ionic ohmic drop in the cylinder and also electronic 
ohmic drop due to the finite conductivity of solid material. 

To calculate a polarization curve altogether 13 parameters must be 
known; four geometrical parameters, six parameters which are characteristic 
of the electrode and three parameters which determine the experimental 
conditions. The performance of the air electrode is calculated for different 
geometries and the optimum geometry is determined. In order to simulate a 
real air electrode the characteristic parameters are measured. Comparisons 
have also been made between calculated and measured polarization curves. 

1. Introduction 

Teflon bonded gas diffusion electrodes made in our laboratory consist 
of two layers: a porous hydrophobic gas-supplying layer, which has good 
conductivity, and a reaction layer, which is partly hydrophobic and partly 
hydrophilic. A schematic representation of the structure of a real electrode 
is presented in Fig. 1. 

The gas-supplying layer consists of porous and hydrophobic material, 
so that the reactant gas, oxygen, can easily diffuse through the pores towards 
the reaction layer, where reactions take place. The hydrophobic property of 
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Fig. 1. Air electrode. 

the material is very important; it prevents the electrolyte from penetrating 
into the pores. Electrolyte in the pores would prevent the diffusion of 
oxygen to the reaction layer and this would result in a dramatic deteriora- 
tion of the electrode’s performance. 

The hydrophobic zone in the reaction layer is the same material as the 
gas-supplying layer, and the hydrophilic zone consists of agglomerates of 
catalytical particles. These agglomerates are porous and are flooded with 
electrolyte. 

In the mathematical model the agglomerates of catalytical particles are 
described as cylinders whose axes are perpendicular to the surface of the 
electrode. Hereafter, when considering the reaction layer, we often use the 
word ‘cylinder’ in this connection. The radius of a cylinder is r. and the 
length is xP The mathematical model of the electrode consists of equal 
elements which are located in a two-dimensional array. Each element is 
composed of a cylinder, a hydrophobic zone which surrounds the cylinder 
and a part of the gas-supplying layer whose thickness is d,. The hydrophobic 
zone which surrounds the cylinder has an intersection area of S. The model 
of the electrode is presented in Fig. 2(a) and an element of the model elec- 
trode in Fig. 2(b). 

During the operation of the electrode, oxygen gas diffuses through the 
gas-supplying layer towards the hydrophobic zone of the reaction layer, 
dissolves in the electrolyte contained in the cylinder and then reacts on the 
active sites of catalyst particles. The generated ionic current is conducted 
towards the free electrolyte in an axial direction of the cylinder. These 
processes are also presented in Fig. 2(b). 

The model was originally presented by Giner and Hunter [l] and later 
improved by Iliev et al., [2]. We have improved the model further by intro- 
ducing the electronic IR drop and by developing a computer program which 
calculates polarization curves, and which is used to optimize the structure of 
the air electrode, to simulate a real air electrode and to analyze the different 
factors affecting the performance of the electrode. The aim of this model 
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Fig. 2. The model of the electrode. 

and program is to contribute to the 
nism of the porous air electrodes and 
electrodes. 

2. The assumptions of the model 

understanding of the working mecha- 
to serve as an aid in manufacturing air 

The model takes into account the physical structure of the electrode, 
the main transport processes which take place, the main electrochemical 
processes and also ionic ohmic drop in the cylinder and electronic ohmic 
drop due to the finite conductivity of material. 

We assume in the model that the hydrophobic zone both in the gas- 
supplying layer and in the reaction layer is homogeneous. The catalyst parti- 
cles and electrolyte are also homogeneously dispersed in the cylinder. The 
activity of the catalyst particles is also constant throughout the cylinder. 

The void fraction /3 is defined as the ratio of the cross-sectional area S 
and the cross-sectional area of the element. The number of elements per unit 
surface area, N, is related to the void fraction as follows 

p= s 
s + Iwo* 

= 1 - Nnr,* (1) 

The cylindrical coordinates are used in the model. The x-axis is perpen- 
dicular to the surface of the electrode, the length of cylinder is x,,, so at the 
bottom of the cylinder x = 0. At the center of the cylinder r = 0, and the 
radius of the cylinder is r,,. 

Next we shall discuss transport processes in the gas diffusion electrode. 
The oxygen diffuses through the gas-supplying layer. It is assumed that the 
diffusion occurs only in the direction of the x-axis (Fig. 2(b)). This assump- 
tion is also used in the hydrophobic zone which surrounds the cylinder; 
we suppose that this zone is so thin that when oxygen dissolves in the 
electrolyte, the concentration gradient in the r-direction remains zero. 
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The effective diffusion coefficient in the hydrophobic zone is denoted by 
i&. 

The dissolution of oxygen is assumed to be a fast process, so that on 
the surface of the cylinder the local concentration of oxygen on the electro- 
lyte side is proportional to the partial pressure of oxygen on the gas side. 
This means that Henry’s law, C(r,,x) = M’(x) is valid in the vicinity of the 
surface. The concentration of oxygen in the electrolyte is denoted by C(r,x) 

and the partial pressure of oxygen by P(x). 
In the cylinder, oxygen diffuses only radially inwards and reacts on the 

diffusion path. The concentration C(r,x) depends on the diffusion in the 
hydrophobic zone, on the effective diffusion coefficient in the cylinder, D5,, 
and on the rate of the electrochemical reaction. 

The electrochemical reaction which takes place in the cylinder is 
assumed to be of the first order. The overall reaction is 

0, + 2H,O + 4e- - 40H- 

The generated current is a function of the concentration of oxygen and over- 
potentials q(x) and r),(x), which are the ionic and electronic potential drop, 
respectively. These are assumed only to be functions of x. These over- 
potentials will be defined precisely and discussed in more detail in connec- 
tion with ionic and electronic IR drops. Equation (2) describes the local 
current density per unit surface area of catalyst 

C(r,x) ( CCZF 
i(r,x) = i. - 

CO 
exp RT (r)(x) -h(x)) 

1 
(2) 

where i, is the exchange current density per unit surface of the catalyst, 
C, (= W,) is the solubility of oxygen at bulk gas pressure, Pa, (11 is the trans- 
fer coefficient, z is the stoichiometric number, F is the Faraday constant, R 

is the gas constant and T is temperature. Equation (2) will be derived later 
by eqn. (18). 

The generated ionic current j(x) flows towards the free electrolyte 
along the x-axes and is given by the expression 

j(x) = j jyi(r,x)2nr dr dx 

0 0 

where y is the ratio of catalyst surface area to catalyst volume. The total 
current density can be calculated using Ohm’s law, j = iiE, where R is the 
effective conductivity of the electrolyte in the cylinder and E is the strength 
of the electric field. Since we have assumed that overpotential is only a func- 
tion of the x-coordinate, E = -(dr)(x)/dx), and because the cross section 
through which the ionic current flows is mo2, we get from Ohm’s law 

dv(x) 
j(x) = --Rnro2 - 

dx 



211 

Since the number of cylinders per unit surface area is N, the total cur- 
rent density, I, whose positive direction is opposite to the x-axis, is 

I = -Nj(xO) (5) 

and using eqns. (1) and (4), we can express the total current density by 

I= 1-p. ---pZI(Xo) = (1 -PIE 
0 Y = x0 

We assume that there is no convection of electrolyte in the cylinder, or 
at least that it is so small that it does not affect the ionic current and it can 
therefore be ignored. 

In addition to the ionic IR drop, electronic IR drop is also considered. 
So the change in overpotential is due to ionic IR drop as well as to the 
electronic IR drop. In a later section we will discuss how to take into 
account the electronic IR drop. 

3. Equations for the transport of oxygen 

3.1. The gas-supplying layer 
Since we are considering the steady state operation, the partial pressure 

of oxygen throughout the electrode is constant uersus time. This means that 
the flux of oxygen, J, is constant along the x-coordinate (because from 
Fick’s second law (dP/dt) = -D(dJ/dx)). The partial pressure of oxygen can 
be calculated from Fick’s first law, which can be written in this case as 
follows 

where ng (mol/(Pa m s)) is the effective diffusion coefficient of oxygen. 
Because the flux is related to the total current density according to equation 
J = 1/(4F), the partial pressure of oxygen at the boundary of the reaction 
layer, where x = 0, can be calculated from 

P(x = 0) = P,(I) = PO l- 
Zdo 

4Fi& PO 

This equation can be combined with eqn. (6), which gives the relation 
between the total current density and the gradient of overpotential at x = x0. 

Equation (8) can also be used to calculate the limiting current density. 
This is the maximum current density which is reached when the partial 
pressure of oxygen is so small (close to zero) in the reaction layer that no 
further reaction can occur. In the mathematical model of the electrode this 
limit is reached when the partial pressure of oxygen at x = 0 is zero. From 
eqn. (8) the limiting current density can be calculated by setting P,(I) = 0 
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I 
4F&P, 

lim = 
d0 

(9) 

3.2. The hydrophobic zone of the reaction layer 
Here we must also consider the dissolution of oxygen at the surface of 

the cylinder. The flux of oxygen across the surface is determined by the 
concentration gradient of oxygen on the electrolyte side, because it is 
assumed that the dissolution itself is a rapid process. The flux across the 
circumference of the cylinder is 

where d, is the effective diffusion coefficient of oxygen in the cylinder and 
C = C(r,x) is the concentration of oxygen in the cylinder. The partial 
pressure of oxygen in the hydrophobic zone of the reaction layer can now 
be expressed by 

(11) 

One boundary condition for the partial pressure P(x) has already been 
derived, eqn. (8), which gives the partial pressure at x = 0. The other 
boundary condition is 

dP 

i 1 d3c x=xo= 0 (12) 

which means that the oxygen gas flow at x = x0 is zero. 

3.3. The cylinder 
On the diffusion path oxygen is consumed due to the electrochemical 

reaction (0, + 2H,O + 4e- * 40H-). The reaction density expressed with 
the aid of the current is iy/(4F) (mol/(m3 s)). For the cylindrical diffusion it 
can be written 

g a2C(r,x) 
e 

ar2 
+ b 1 aC(r,x) W(r,x) --- 

er ar 4F 
=0 (13) 

Because the dissolution is a rapid process, the other boundary condition 
for the concentration is 

C(r,,x) = kP(x) 

And the other follows from symmetry 

(14) 

aC ( ) ar,r=o= 0 (15) 
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4. Ionic and electronic IR drop 

In Fig. 3 a schematic drawing of the potential curves in the electrode 
as a function of the x-coordinate is presented. In the reaction layer, where 
O<X<Xg, there are two potential curves; G&X), potential in the liquid 
phase and &(x), potential in the solid material phase. The measurable over- 
potential is 

77(x) = Gref - 44 = (&Ax) - ho) + Cl + c2 (16) 

where C1 and Cz are constants, & is the potential at the air electrode (at the 
inlet 3c = --d,) and &ref is the potential of the reference electrode. The over- 
potential due to the electronic IR drop is 

%I@) = &J(x) - $M, (17) 

- %ig/HgO 
._ 

I ’ P 

-de c Distance ‘* 
x 

Fig. 3. The potential curves in the air electrode. 

4.1. The local current density 
The local current density is defined by 

w-,x) 
i(r,x) = i’, - 

CO 
exp (@L@)-@M(~)) 

From eqns. (16) and (17) we obtain &,(x) - #M(X) = q(x) -&(x) + C1 + Cz. 
Substituting this in eqn. (18) and then using the notation 

i, = i’, exp(azF/(RT)(CI + C,)) (19) 

we obtain the previously presented equation (eqn. (2)). 

4.2. Equations for electronic and ionic IR drop 
We assume that electrons transmit the hydrophobic zone and reaction 

layer only in the direction of the x-axes. In other words, the electrons are 
moved to the cylinder with no voltage drop in the direction perpendicular 
to the x-axes. This is quite similar to the assumption that when oxygen 
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dissolves through the surface of the cylinder, the concentration gradient of 
oxygen perpendicular to the x-axes remains zero. 

In the steady state the sum of electronic current (Jo) and ionic current 
(Jo) is constant 

Jo + jh&) = constant (26) 

Using Ohm’s law the currents can be written as follows 

dh 
j&r) = -mo2r7: - 

dx 

dh 
j&) = --SE, - 

dx 

(21) 

(22) 

where S is the cross-sectional area of the hydrophobic zone around the 
cylinder. In these last two equations 77 and nm can be used instead of #L and 
@M, respectively, since the derivatives of these are the same. This can easily 
be seen from eqns. (16) and (17), since the difference between q and & and 
also between TJ,,., and &, is constant. 

When eqns. (20), (21) and (22) are differentiated and q and qrn are 
used instead of @L and $JM, respectively, we get 

dh, d2rl -= 
dx 

-7rro2ii - 
dx2 

& d’rlm - =-_SRm- 

dx dx2 

(23) 

(24) 

(25) 

If the term dj,/d.r in eqn. (24) is divided by (4F), we get the change of flux 
of OH- ions across a layer which has a thickness of do. The change of OH- 
ions flux is due to the generation of OH- ions which is equal to the flux of 
oxygen through the surface of the cylinder. Hence we can write 

djL 1 -_ 
dx 4F 

Combining eqns. (24) and (26) we get 

0 

(26) 

(27) 

Next we will derive a similar equation for the overpotential in solid 
materials, q,. An expression for (dj&l.r) can be obtained from eqns. (23) 
and (26). According to eqn. (23) (dj&.l~) = -(dj,/&) and substituting this 
in eqn. (26), we get 



djM 1 - - = 
dx4F 

Now combining eqns. (25) and (28) we get 

0 
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(28) 

cw 

4.3. Boundary conditions 
One boundary condition for overpotential in the cylinder is related to 

the total current density. According to eqn. (6) the total current density can 
be expressed using the gradient of overpotential at x = x,,. When the total 
current density is known, we get a boundary condition for n(x) 

I 

(1 - P)R 

The other boundary condition is 

0 

(30) 

(31) 

This means that at the bottom of the cylinder, where x = 0, the current, 
jL(0), is zero. 

In the gas-supplying layer, where -do Q x Q 0, jL is zero and the elec- 
tronic current per one element of the model electrode can be expressed by 
Ohm’s equation 

d’h 
jM(x) = ‘-i&(s + rro2)- 

dx 
(32) 

By integrating this equation, we obtain an expression for @M(O) - $M,, 
(which is qm as defined with eqn. (17)) 

%m = - ‘&htO) 
R&S + m2) 

(33) 

Since the total current density I = jM(0) and N(S + nro2) = 1 we get a bound- 
ary condition 

rim(0) = - 2 (34) 

In the reaction layer at x = 0 the electronic current can be written 

x=0 

(35) 
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As mentioned before Jo is zero, so the total current density is I = Nj~(0) 
and since SN = 0, we get the other boundary condition 

I =- 
x=0 P&l 

(36) 

We now have four eqns. ((ll), (13), (27) and (29)) and eight boundary 
conditions ((8), (12), (14), (15), (30), (31), (34) and (36)), which describe 
the transport of oxygen, electrochemical reaction and electronic and ionic 
IR drop. Overpotential r) and qrn can be calculated from these equations, 
when all 13 parameters (&, 6,, R, R,, 7i0, (Y, P,,, 12, T, x0, ro, do, /3) and the 
total current density (r) are known. 

5. Solving the equations 

The concentration of oxygen in the cylinder has a solution under 
boundary conditions (14) and (15) 

C(r,x) = kP(x) 
Idq(x)(rlro)) 

Io(qtx)) 
where IO is the modified Bessel function of zero order and 

Q(X) = 

From eqn. (37) we get 

ac ( 1 z r’ro= 
k Q(X) Id&)) 

-L- Iota(x)) 
P(x) 

(37) 

(38) 

(3% 

where I, is the modified Bessel function of the first order. If the derivative 
of the concentration in eqns. (ll), (27) and (29) is replaced by eqn. (39), we 
get 

S&g - 27rr& ;\q(x)I$yP(x) = 0 

I,(q(x)) 
q(x) Io(q(x)) P(x) = 0 

t 

(40) 

(41) 

(42) 
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The partial pressure of oxygen can be solved by eliminating term qIl/lo 
from eqns. (40) and (41) and integrating the obtained equation twice. The 
result is 

P(x) = P, - 

(43) 

Substituting eqn. (43) in eqns. (41) and (42), we obtain two equations with 
two unknown functions, q(x) and TJ~(x). These equations are quite com- 
plicated, since q(x) is a function of both r)(x) and Q&X) (eqn. (38)). These 
equations are solved numerically using a shooting method. In the following 
we give a brief summary of the numerical solution method. 

The x-axis from zero to x0 is divided into 101 points, Xi, where i = 
0 . . . 100. The second derivative is written as [(vi _i - 2qi + qi+i)]/h2, 
where vi = I and AX = ~~100. If q. and nl or 77,+, and qloo were known, 
then the third point and the rest of the curve could be calculated explicitly. 
However, as was mentioned above, r), is also included in eqn. (41) and 77 is 
included in eqn. (42). Thus, to calculate point vi we have to know ‘~)i _ i, 
qi -2 and r),, 1, and analogously to calculate point n,,,, i, we have to know 
nm, i _ 1, ‘&, i -2 and ‘I)i. This means that these two eqns. (41) and (42) must 
be solved simultaneously. 

From the boundary conditions (eqns. (30), (31), (34) and (36)), we 
know the derivatives of 77(x) at x = 0 and at x = x0, and we know the value 
of qrn at x = 0 as well as the derivative at that point. The problem is how the 
third point (n2) can be calculated. To do this we should know q(O), but 
since this is unknown we must make a ‘random’ choice for this value and 
then we are able to calculate the whole curve. The proper result must satisfy 
the boundary condition (30), which is the derivative of 7 at x = LX,,. Thus, we 
must make choices for ~(0) repeatedly until the correct result is obtained. 

The correct value for q(O) can be found as follows. We can form a func- 
tion, which is the difference between the derivative of the calculated curve 
and the real derivative as a function of r)(O). Thus, if the derivative of the 
calculated curve is smaller than the real derivative, the function has a positive 
value and vice versa. Now the real value of q(0) is the root of this function. 
When the root is found, the equations of n(x) and rim(x)) ((41) and (42)) are 
solved and the measurable overpotential is v(xo). 

6. The experimental determination of the parameters 

There are 13 parameters which must be fixed to calculate a curve at a 
specific current density. Six of these are characteristics for the material used 
in the air electrode (&, 6,, ii, ii,, rio, a), three parameters determine the 
experimental conditions (PO, k, 2’) and four parameters fix the geometry of 
the air electrode (x0, ro, do, 0). The parameters which are experimentally 
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determined for an electrode are the diffusion coefficient, 6,, the electronic 
conductivity of the hydrophobic material, R,, the ionic conductivity of 
electrolyte in the porous catalyst particles, R, the exchange current density 
per unit volume of the cylinder, yiO, and the transfer coefficient, CL The 
effective diffusion coefficient in the electrolyte can be derived from con- 
ductivities ii and ii,. All the other parameters are known. 

6.1. Measuring the diffusion coefficient of oxygen in the hydrophobic zone 
At high current densities the diffusion coefficient in the hydrophobic 

zone is the most decisive factor. When the current density is increased, the 
concentration of the reactant is decreased at the surface of the cylinder. And 
finally with a specific current density the concentration approaches zero and 
the desired reaction can no longer take place. This current density is called 
the limiting current density and it can be measured. 

After determining the limiting current density experimentally, the 
diffusion coefficient can be calculated from eqn. (9), which presents the 
limiting current density as a function of the effective diffusion coefficient 
at the hydrophobic zone. For the materials used in our air electrodes we 
have measured values Di, = 0.9 X low6 . . . 7 X 10e6 m2/s, depending on the 
porosity of the hydrophobic zone. The preparation of our air electrodes is 
discussed in more detail in connection with the results. 

6.2. Estimation of the diffusion coefficient of oxygen in the cylinder 
The correlation between D,, which is the diffusion coefficient of oxy- 

gen in pure electrolyte, and 6, can be given as 

b, = eDe (44) 

where e is the diffusion resistance coefficient due to the porous structure. 
Knowing e and D,, the effective diffusion coefficient 8, can be calculated. 

In connection with the theoretical estimation of ionic conductivity, it is 
shown that the diffusion resistance coefficient is related to the effective 
ionic conductivity, ii, as follows 

R 
e= - 

K 

6.3. Measuring the exchange current density and the transfer coefficient 
These two parameters can be determined using very small total current 

densities. The local current density is given by eqn. (2). If the total current 
density is very small, it can be assumed that the concentration of oxygen 
remains constant throughout the cylinder, that the electronic IR drop is 
zero, V&Z) = 0, and it can also be assumed that q(x) is constant, I. 
(When the current density is close to zero, electric field is also close to zero 
and it follows that q(x) is almost a constant, sincej = KE = -K(dq/&).) On 
the basis of these assumptions the local current density is 



CkZF 
i(r,x) = iO exp 

[ 1 RT r)(G) 

The total current density 

(46) 

is presented by eqns. (3) and (5). When eqn. (46) is 
taken into account and when the double integration of eqn. (3) is calculated, 
the equation for total current density becomes 
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I = yiO(l - /3)x0 exp [g n(G)] 

From this equation the overpotential can be calculated 

77(x0) = 2 WI + 2 W/IO) 

(47) 

(43) 

where we have used the notation IO = yio(l - /3)x,,. When /3, x0 and IO are 
known, the characteristic parameter, yio, can be calculated. The current 
density IO can be determined experimentally. If the overpotential r)(3co) is 
measured using very small current densities and these results are presented as 
a function of In(l), the current density 1, is the current density at n(x,) = 0. 

The transfer coefficient (x is included in the gradient of this curve and it 
could be calculated from the term RT/((wzF), assuming that the stoichio- 
metric number z is known. Actually, however there is no need to determine 
the transfer coefficient o and z separately, as only the product CLZ is needed, 
and it can be determined from the gradient of the curve. For a special cata- 
lyst, CoTMPP, we have measured values (YZ = 0.71 . . . 1.37. 

6.4. Measuring the electronic conductivity of hydrophobic material 
The conductivity can be determined using a rectangular sample of 

hydrophobic material, which is prepared by the same method as the air 
electrode. A known current, j, is conducted through the sample and the 
potential, U, is measured between two contacts, the distance between these 
contacts being d. The sample has a cross-sectional area of A, which should be 
constant throughout the sample. Now the current density is I = j/A, and 
using Ohm’s law, the conductivity can be calculated 

j/A = iiE = RU/d i.e. R = jd/(AU) (49) 

For our base material (carbon 70 wt.% and PTFE 30 wt.%) we have mea- 
sured values R, = 100 . . . 360 l/(G?m). 

6.5. Measuring the ionic conductivity of electrolyte in the cylinder 
The material of the sample used for measurement is the catalyzed 

hydrophilic material used in the air electrode. The sample is in the electro- 
lyte between Cwo plates, through which the current is conducted. The poten- 
tial difference across the sample is measured. When the thickness (d) and the 
cross-sectional area (A) of the sample are known, the effective ionic con- 
ductivity of electrolyte in the hydrophilic material can be calculated from 
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eqn. (49). We have not measured the ionic conductivity, but estimated it 
theoretically in the following way. 

7. Theoretical estimation of ionic conductivity of electrolyte in the cylinder 

First we consider the ionic conductivity of pure electrolyte. Let the 
electrode be a planar electrode and the electrolyte a KOH solution. We 
assume that there is enough oxygen available in the electrolyte for the 
reaction and also that there is no electrolyte convection. At first the concen- 
tration of K+ and OH- ions is assumed to be constant throughout the elec- 
trolyte. When a current density I is conducted through the electrode, the 
concentrations of the ions will change as a function of time and as a function 
of distance from the planar electrode, and the electric field is formed. The 
following equations describe the phenomena 

acOH(x, t) 

at 
= DOH 

azcOH(% t) 
+ 

ZOHFDOH a(ECOHkt)) 

ax2 RT ax 
(59) 

at 
a2cKtx, t) + zK~K awK(& o) 

K 
ax2 RT ax 

(51) 

d-&t) F 
- = fOe, F (ZiCi(X9t)) 

dx 
(52) 

The concentrations of K+ and OH- ions are denoted by C~(X, t) and Con(~, t) 
and the diffusion coefficients by DK and DOH. E is the strength of the elec- 
tric field, e, is the permittivity of free space, Ed is the dielectric constant of 
the ,medium and xi is the charge of the ion. Equations (50) and (51) are the 
balance equations for OH- ions and K+ ions, respectively. Equation (52) is 
the first of the Maxwell equations. 

The initial conditions are 

Con(x,o) = Con*, &(x,9) = Ck*, E(x,O) = 9, x 2 9 (53) 

where Ci* is the initial (bulk) concentration of ion i. And the boundary con- 
ditions are 

jOH(O,t) = - f , j&t) = 0, E(O,t) = 0, t> 0 (54) 

where ji is the flux of ion i as a function of distance and time. The condition 
for the strength of the electric field follows from the assumption that the 
electric conductivity of the planar electrode is sufficiently high for the field 
to remain at zero at the surface of the electrode. 

Equations (50) - (52) are solved using the predictor-corrector method. 
This means that at each time, ti, the concentrations and the induced electric 
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field are calculated until the change is small enough, thus the correct values 
of concentrations and strength of the electric field are attained at the time tie 
The time step At (= ti - ti _ 1) used in the calculations must be very small 
(lo-” s). Since it is a time-consuming process to calculate one time step, 
only about a thousand time steps can be calculated in a reasonable time. 
Thus, only time intervals of 10hg s have been calculated. But this time inter- 
val proved to be sufficiently long to determine the strength of the electric 
field. This means that regarding the electric field the steady state is reached 
in less than 10Pg s. 

When one thousand steps were calculated, it was found that the 
strength of the electric field reached a constant value very rapidly, after only 
a few time steps. Thus, by calculating only a small time interval, the induced 
electric field at a certain current density can be determined. It was also 
found that the strength of the electric field is constant throughout the elec- 
trolyte, except at the surface of the electrode, where its value is zero, as was 
assumed. 

When the strength of the electric field is known, the ionic conductivity 
of the electrolyte can be determined; K = I/E. If we assume that the diffusion 
coefficient is not dependent on the concentration, a linear dependency, K = 
K(C), is attained (Fig. 4), which is not true in a real system. Experimentally 
determined [3] dependency between the ionic conductivity and the concen- 
tration of the electrolyte is also presented in Fig. 4. The deterioration of the 
conductivity at large concentrations can be explained by the dependency of 
the diffusion coefficient on the (bulk) concentration. The conductivity 
uersus concentration is calculated by using the following diffusion coeffi- 
cients 

Ionic conductivity of KOH-electrolyte 
(l/(Ohm’cm)) 

1 , 

Concentration of electrolyte (mol/l) 

1 - ref 13) --Ef D-D(c), Eq.(57) 1 + D*COnlt. -D.D(c). Eq.(50)-(54) 

Fig. 4. Ionic conductivity of KOH electrolyte. 
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DOH OH* - 100 mol/m3) + 0.46 X lop8 m2/s 

Dx = -6 X lo-l3 K * - 100 mol/m3) + 0.76 X lop8 m2/s (55) 

These are used when Ci* > 100 mol/m3. When the concentrations are lower, 
values DOH = 0.46 X 10m8 m2/s and DK = 0.76 X lo-’ m2/s are used. The ionic 
conductivities ‘based on these diffusion coefficients coincide well with the 
experimental curve (see Fig. 4). 

Calculations also showed that the gradients of concentrations of OH- 
and K+ ions are zero throughout the electrolyte except in the immediate 
vicinity of the surface. 

An approximate function for conductivity uersus concentration can 
also be derived from the flux equation 

zFD J=-II: + -CE 
RT 

(56) 

We assume that only OH- ions conduct the electricity in the steady 
state; the role of K+ ions is only to maintain the electrical neutrality of the 
electrolyte. 

We now know that the concentration has a gradient only in the vicinity 
of the surface of the electrode. Thus, only slightly farther away gradient 
dC/& is zero. And when the flux is expressed by the current density (J = 
I/(zF)), we obtain the following equation 

I z2F2D KZ-_= 
E 

-C 
RT 

(57) 

If the diffusion coefficient of eqn. (55) is used, we obtain from eqn. 
(57) a curve which resembles the experimentally determined curve (Fig. 4). 

Now we consider a porous structure filled with electrolyte. The mathe- 
matics are still the same as described above, but we must use effective diffu- 
sion coefficients, i5. Now we can write an equation similar to eqn. (57), but 
K and D are replaced by effective values, R and 6. If these two equations are 
divided by each other, we obtain an equation for the effective diffusion 
coefficient of the OH- ion 

With e = 0.045 and using Fig. 4 we obtain ii = 2.5 l/(!Zm) for 7 M KOH 
electrolyte. 

Although eqn. (58) applies to the diffusion coefficient of the OH- ion, 
it is obvious that this is also valid for the diffusion coefficient of oxygen in 
electrolyte, since both the OH- ions and oxygen move in the electrolyte 
in the cylinder where they both have the same diffusion resistances. If we 



223 

compare eqns. (44) and (58) we can see that the diffusion resistance coeffi- 
cient E = R/K. Thus we can determine the effective diffusion coefficient of 
oxygen simply by measuring the effective conductivity of the electrolyte. 

8. Results 

A program has been made which calculates polarization curves with the 
given 13 parameters; the program solves eqns. (41) and (42) numerically. 
With this program the optimum geometry of the air electrode has been deter- 
mined and the effects of the characteristic parameters on the performance of 
the electrode have been studied. Also, a calculated polarization curve has 
been fitted with a measured curve, and different possibilities for improving 
the performance of this air electrode made in our laboratory have been 
studied. 

In these calculations the parameters which determine the circumstances 
are always the same; the initial partial pressure of oxygen PO = 21280 Pa, 
temperature T = 298 K and Henry’s constant k = 9.75 X lo-’ mol/(m3 Pa). 

8.1. Optimization of geometrical parameters of the air electrode 
In the following calculations the geometrical parameters have been 

optimized. The characteristic parameters which are used are: 

R= 2.5 l/($Zm) 

R, = 250 l/(SZm) 

& = 0.9 X lop6 m2/s 

D’, = 2.2 X lo-” m2/s 

yiO = 9.5 X 10’ A/m3 

RT/(azF) = 0.01901 V 

From Figs. 5 - 8 we can see that the optimum geometry for this particular 
air electrode at current density of 500 mA/cm2 is 

x0 = 0.05 mm; r. = 0.005 pm; do = 0.0 mm; (3 = 0.4. 

We can also see from these Figures that the optimum geometry is different 
at smaller current densities. For example, at 100 mA/cm2 the optimum 
length of the cylinder is between 0.15 and 0.2 mm. The optimum geometry 
is also dependent on the characteristic parameters. Thus, for each electrode 
with different characteristic parameters, the optimization must be done 
separately. 

8.2. The effects of characteristic parameters on the performance of the air 
electrode 

The contributions of the different characteristic parameters to the per- 
formance of the air electrode can be analyzed with the help of our program. 
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Potential vs. Hg/HgO (V) 

-0.4 3 0 lt 
0 50 100 150 200 250 300 350 400 450 500 

Current Density (mA/cm2) 
I 1 

I 
* x0.0.005 mm + x0-0.01 mm x x0.0.05 mm 

0 x0.0.10 mm x x0*0.15 mm 0 x0.0.20 mm 1 

Fig. 5. Polarization curves with different values of the length of the cylinder, x0. The 
other geometrical parameters used are r. = 0.15 pm, do = 0.4 mm, fi = 0.4. 
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Fig. 6. Polarization curves with different values of the radius of the cylinder, ‘0. The 
other geometrical parameters used are x0 = 0.1 mm, do = 0.4 mm, 0 = 0.4. 

This is done by eliminating the effects of the other characteristic parameters. 
The geometrical parameters are fixed in all these cases; x0 = 0.1 mm, r. = 
0.15 pm, do = 0.4 mm and /3 = 0.4. The parameters which determine the 
circumstances are as mentioned before. 

To analyze the contribution of the electrochemical reaction of which 
the exchange current per unit volume ri, = 9.5 X 10d5 A/m3 and the slope 
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Potential vs. Hg/HgO (V] 
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Fig. 7. Polarization curves with different values of the thickness of the gas-supplying 
layer, do. The other geometrical parameters used are 3~0 = 0.1 mm, ro = 0.15 pm, fl= 0.4. 

Potential vs. Hg/HgO (V] 
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' b = 0.20 + b . 0.25 0 b . 0.35 

I x b . 0.40 0 b . 0.45 x b . 0.55 I 

Fig. 8. Polarization curves with different values of the void fraction, 0. The other geo- 
metrical parameters used are x0 = 0.1 mm, r. = 0.15 pm, do = 0.4 mm. 

RT/((wzF) = 0.01901 V, the diffusion coefficients and the conductivities 
must have sufficiently high values so that there are no potential drops due to 
these factors; ii = 10 000 l/(G!m), R, = 10 000 l/(am), 6, = 1 X 10m3 m2/s 
and&= 1 X 10T3 m2/s. The polarization curve with these parameters is pre- 
sented in Fig. 9. 
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Potential vs. Hg/HgO (V) 
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Fig. 9. The contribution of the different factors to the performance of the air electrode. 

In the case of the ionic and electronic conductivity, the diffusion coef- 
ficients are as before, the exchange current per unit volume ri,, = 6.66 X lo6 
A/m3 and the slope RT/(azF) = 0.0257 V (a, = 0.5, z = 4). The effects of 
these two conductivities are analyzed separately. For ionic conductivity 
analysis the parameters are: ii = 2.5 l/(am) and ii, = 10 000 l/(am), and 
for the electronic conductivity analysis: ii = 10 000 l/(nm) and ii, = 250 
l/(!Z?m). These curves are presented in Fig. 9. 

The contributions of the effective diffusion coefficients of oxygen are 
also analyzed separately. The parameters used are: ii = 10 000 l/(am), ii, = 
10 000 l/(S2m), rio = 6.66 X lo6 A/m3 and RT/((rzF) = 0.0257 V. In the case 
of diffusion in the gas-supplying layer we have 6, = 0.9 X lop6 m2/s and d, = 
1 X lop3 m2/s and in the case of diffusion in the electrolyte: & = 1 X lop3 
m2/s and ne = 2.2 X lo-” m2/s (Fig. 9). 

Although these factors can be analyzed separately, they are not 
independent of each other. In other words, we cannot take a sum of these 
curves to achieve the polarization curve where all these factors are consid- 
ered, which is also presented in Fig. 9. 

From Fig. 9 we can see that the most important factors which reduce 
the performance at low current densities (100 mA/cm2) are the reaction 
itself and the ionic conductivity of the electrolyte, and at large current 
densities (500 mA/cm2), the effective diffusion coefficient of oxygen in the 
gas-supplying layer and again the ionic conductivity. Thus, to increase the 
performance of this particular air electrode at low current densities, we 
should concentrate on catalyst research to improve the reaction mechanism. 
And if we want to improve the performance at large current densities, we 
should concentrate on decreasing the diffusion resistances in the gas-supply- 
ing layer, to make the electrode more porous. 
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We could also improve the effective ionic conductivity of the electro- 
lyte in the catalyzed carbon agglomerate (in the cylinder). Since the electro- 
lyte is 7 M KOH solution and its ionic conductivity is at its maximum, the 
only possibility for improving this parameter is to make the agglomerate 
more porous. 

8.3. Simulation and comparison 
In our laboratory we have made air electrodes consisting of two layers; 

a hydrophobic gas diffusion layer and the reaction layer, which is partly 
hydrophobic and partly hydrophilic. The hydrophilic material in the 
reaction layer consists of catalyzed carbon particles, which are flooded with 
electrolyte. The current collector grid is also embedded in the gas-supplying 
layer. This structure is very similar to the structure of the model electrode, 
and the program which was made can be used to optimize the structure of 
the electrode and also to analyze the contributions of the different factors 
to the performance of the real air electrode. 

Both layers of the electrodes are made of a mixture of heat-treated 
carbon and PTFE powder. To prepare the gas-supplying layer the carbon 
(e.g., Vulcan XC-72R) was heat treated (900 “C, CO*, l/2 h) and mixed with 
Teflon dispersion (Du Pont Teflon resin 30N). The mixture was dried, 
ground and mixed again with organic solvent and NH,+HCOs. After filtering 
this mixture it was rolled. The reaction layer was prepared in the same way, 
except that the catalyst was deposited onto the carbon after the heat treat- 
ment. After these two layers had been rolled separately, they were rolled 
together on the nickel-metal screen. The electrode was dried and then 
sintered in a furnace at 350 “C for l/2 h. The preparation of the air electrode 
is discussed in more detail elsewhere [ 41. 

The polarization curves were measured at room temperature using a 
7 M KOH solution and an Hg/HgO reference electrode. There was no gas 
feeding to the air electrode, so that the partial pressure of oxygen was 0.21 
atm. A measured curve is presesented in Fig. 10. 

To simulate the real air electrode, all the characteristic parameters and 
the parameters which fix the experimental conditions must be known. Some 
of the geometrical parameters are also known; the thickness of the gas- 
supplying layer, the length of the cylinder which is the thickness of the 
reaction layer and the void fraction. Using the preparation method described 
briefly above, we can easily control all these three geometrical parameters, 
but the radius of the cylinder must be fitted with the measured curve. The 
known parameters of this real air electrode are: 

R = 2.5 l/(am) 3to = 0.1 mm 

Gn = 250 l/(SL?m) do = 0.4 mm 

6, = 0.9 X lop6 m*/s p = 0.4 

13, = 2.2 X lo-” m*/s PO = 21280 Pa 
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Fig. 10. Measured polarization curve and calculated curves with different values of the 
radius ro. 

-yio = 9.5 X lo5 A/m3 T=298K 

RT/(azF) = 0.01901 v k = 9.75 X lo-’ mol/(m3 Pa) 

Several polarization curves are calculated with these parameters, varying 
the value of the radius from 0.5 to 0.01 pm. These curves are also presented 
in Fig. 10, from which we can see that the calculated and the measured curve 
fit best when the radius is 0.15 pm. 

The optimum geometry of this electrode has already been determined 
in Section 8.1; the same parameters were used in that connection. From 
Figs. 5 - 8 we can see that the performance of the air electrode could be 
improved by reducing the thickness of the reaction layer to 0.05 mm, by 
reducing the radius to 0.01 pm or by reducing the thickness of the gas- 
supplying layer as much as possible. The polarization curve for the air 
electrode in question with the optimum geometry is presented in Fig. 11. 

The performance could also be improved by increasing the effective 
diffusion coefficient of oxygen in the gas-supplying layer, the electronic 
conductivity of the material or the activity of the catalyst. It is calculated 
how much improving these factors can affect the performance of the air 
electrode. The absolute maximum of the effective diffusion coefficient of 
oxygen in the gas-supplying layer is 20.8 X lop6 m2/s, which is the value in 
air with no diffusion resistances. The polarization curve is calculated with 
this diffusion coefficient, the other parameters being as mentioned for the 
real air electrode. Similarly, the polarization curves are calculated separately 
with values: ii = 10 000 l/(!L?m), (Y = 0.5 and rf, = 6.66 X lo6 A/m3. A curve 
where ail these values are used is also calculated and further, if we use the 
optimum geometry with these characteristic parameters an even better curve 
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Potential vs. Hg/HgO (V) 
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Fig. 11. The measured polarization curve and calculated curve with optimum geometry. 
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Fig. 12. The effect on the performance of improving the characteristic parameters of the 
air electrode. 

can be obtained (Fig. 12). But since most of the above mentioned character- 
istic parameters are impossible to reach in practice, the best curve is also the 
absolute upper limit for the performance of this electrode as long as the 
experimental conditions remain unchanged. 
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List of symbols 

Roman symbols 

CO Concentration of dissolved oxygen in the cylinder at equilibrium 
(mol/m3) 

C Concentration of dissolved oxygen in the cylinder (mol/m3) 
C1, C2 Potential drops due to contacts (V) 

do 
D _g 
D, 

D, 
iL 
E 
F 
iO, iO’ 

; 
Ilim 

IO 

IO 

I1 

i 

jL 

jM 

J 
k 

: 
P 

PO 
4 
r0 

R 
s 
T 

X0 

.z 

Thickness of the gas supplying layer (m) 
Diffusion coefficient of oxygen in gas (mol/(Pa m s)) 
Effective diffusion coefficient of oxygen in the hydrophobic zone 
(mol/(Pa m s)) 
Diffusion coefficient of oxygen in pure electrolyte (m2/s) 
Effective diffusion coefficient of oxygen in the cylinder (m2/s) 
Strength of the electric field (V/m) 
Faraday constant (C/mol) 
Exchange current density (A/m2) 
Local current density (A/m’) 
Total current density (A/m2) 
Limiting current density (A/m’) 
Modified Bessel function in connection with solving the equations 
Current density, defined as yio( 1 - /3)x0 (A/m2) 
Modified Bessel function of the first order 
Current (A) 
Ionic current (A) 
Electronic current (A) 
Flux of oxygen (mol/m2 s) 
Henry’s constant (mol/m3 Pa) 
Number of electrons involved in the reaction 
Number of elements per unit area (mM2) 
Partial pressure of oxygen in the hydrophobic zone (Pa) 
Initial partial pressure of oxygen at x = -do (Pa) 
Function defined by eqn. (38) 
Radius of the cylinder (m) 
Gas constant (J/mol K) 
Cross-sectional area of an element surrounding the cylinder (m’) 
Temperature (K) 
Length of the cylinder (m) 
Stoichiometric number 

Greek symbols 

; 
Transfer coefficient 
Void fraction 

E Diffusion resistance coefficient 
EO Permittivity of free space (F/m) 
er Dielectric constant of the medium 
@L Potential in the liquid phase (V) 
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Potential in the solid material phase (V) 
Potential of the reference electrode (V) 
Potential of the working electrode at x = -do (V) 
Potential in the material when the electronic conductivity of the 
material is infinite (V) 
Over-potential (V) 
Overpotential due to the electronic IR drop (V) 
Ratio of catalyst surface area to catalyst volume 
Effective ionic conductivity of the electrolyte in the cylinder 
WWm)) 
Effective electronic conductivity of the material (l/(nm)) 
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